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Abstract
Primary hyperoxaluria Type 1 is a rare autosomal recessive
inborn error of glyoxylate metabolism, caused by a defi-
ciency of the liver-specific enzyme alanine:glyoxylate ami-
notransferase. The disorder results in overproduction and
excessive urinary excretion of oxalate, causing recurrent
urolithiasis and nephrocalcinosis. As glomerular filtration
rate declines due to progressive renal involvement, oxalate
accumulates leading to systemic oxalosis. The diagnosis is
based on clinical and sonographic findings, urine oxalate
assessment, enzymology and/or DNA analysis. Early ini-
tiation of conservative treatment (high fluid intake, pyri-
doxine, inhibitors of calcium oxalate crystallization) aims
at maintaining renal function. In chronic kidney disease
Stages 4 and 5, the best outcomes to date were achieved
with combined liver–kidney transplantation.

Keywords: combined liver–kidney transplantation; nephrocalcinosis;
oxalosis; primary hyperoxaluria type 1; urolithiasis

Introduction

The term ‘primary hyperoxaluria’ (PH) encompasses an
indeterminate number of rare autosomal recessive calcium
oxalate kidney stone diseases, of which three have been

described at the molecular level. PH1 is caused by muta-
tions in the AGXT gene, which lead to dysfunction of the
vitamin B6-dependent liver-specific peroxisomal enzyme
alanine:glyoxylate aminotransferase (AGT) [1, 2]. PH2
arises from mutations in the GRHPR gene and subsequent
dysfunction of the enzyme glyoxylate/hydroxypyruvate
reductase (GRHPR) [3–5]. PH3 is caused by mutations in
the HOGA1 gene, which is thought to encode the mito-
chondrial enzyme 4-hydroxy-2-oxoglutarate aldolase [6].

This paper focuses on PH Type 1 (PH1, OMIM 259900),
the commonest form of PH. The clinical presentation
ranges from asymptomatic through to isolated or recurrent
renal stones, nephrocalcinosis and renal impairment. The
heterogeneous presentation leads to a diagnostic challenge
and therefore, specific biochemical and genetic assessment
is required to confirm a diagnosis of PH1 and to institute
appropriate treatment.

Materials and methods

PH1 is a very rare inherited disease with a limited access to recommen-
dations for diagnosis and management, due to the lack of randomized
clinical trials and meta-analyses. An expert group (OxalEurope) has there-
fore been established to provide diagnostic and therapeutic recommenda-
tions for patients with PH. Experts were selected on both their individual
commitment and their peer-reviewed publication activity in this field.
Number of PubMed papers were (MeSH: hyperoxaluria, October 2011):
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Acquaviva 3, Cochat 34, Danpure 64, Daudon 25, De Marchi 3, Fargue 8,
Groothof 6, Harambat 7, Hoppe 43, Hulton 7, Jamieson 10, Kemper 20,
Mandrile 3, Marangella 45, Picca 1, Rumsby 41, Salido 15, Straub 2 and
van Woerden 6. Due to the rarity of the disease and the lack of evidence
coming from randomized clinical trials, recommendations are based on
ungraded statements.

Demography

PH1 has an estimated prevalence ranging from one to three
per million and an estimated incidence rate of ~1:100 000
live births per year in Europe [7–9]. Higher rates are re-
ported in isolated populations [10]. PH accounts for ~1% of
paediatric end-stage renal disease (ESRD) in registries
from Europe, USA and Japan [11–13]. In contrast, PH is
more prevalent in countries where consanguineous mar-
riages are common: ~10% of Kuwaiti and ~13% of Tunisian
children with ESRD have been reported to have PH [14, 15].

Presentation

PH1 may present at any age. The presentation varies from
infantile nephrocalcinosis and failure to thrive as a result of
renal impairment to recurrent or only occasional stone for-
mation [16]. Although patients with presentation in adult-
hood often have a history of only sporadic stone disease,
over 50% of these patients present with ESRD at the time of
diagnosis [9, 17]. Some patients may be identified as pre-
symptomatic subjects with a family history of PH1 [16]. As
a result of kidney injury, glomerular filtration rate (GFR)
always declines leading to chronic kidney disease (CKD)
and ultimately to ESRD and further systemic involvement
(named ‘oxalosis’).

Clinical and radiological assessment

(1) We recommend considering a diagnosis of PH in any
child with a first kidney stone and in adults with re-
current stone disease.

(2) We recommend considering a diagnosis of PH in any
subject with nephrocalcinosis particularly when asso-
ciated with decreased GFR.

(3) We recommend searching for PH in the presence of
oxalate crystals (calcium oxalate monohydrate) in any
biological fluid or tissue.

(4) We recommend screening relatives of index cases.

(5) We do not recommend screening in the general
population.

Patients should undergo metabolic screening for PH1 at
presentation of a first kidney stone (in a child) or recurrent
or familial stone disease (at any age) or if nephrocalcinosis
is detected. Stone analysis may reveal characteristic mor-
phology and contain >95% calcium oxalate (CaOx) mono-
hydrate (whewellite) often presenting with a particular
morphology [18]. PH1 should be considered in any patient
with renal failure of unknown cause, particularly in the
presence of nephrocalcinosis or severe stone burden.

Preliminary PH1 diagnostic workup should include 24-h
urine collection for oxalate, creatinine and glycolate;
plasma oxalate (POx) when GFR is <60 mL/min/1.73m2.

More specific investigations are covered in the biochem-
ical and genetic sections below.

Ultrasonography (US) of the kidneys may elucidate
stones and/or medullary or diffuse nephrocalcinosis. Pa-
tients with ESRD from PH may have diffuse cortical neph-
rocalcinosis which can be hard to distinguish from the
common picture of an ‘end-stage kidney’ by US (Table 1).

Table 1. Organ involvement in PH patients with renal failurea

Organ Symptoms Diagnosis

Kidneyb Stones, medullary or diffuse nephrocalcinosis, cortical
nephrocalcinosis

US
CT (cortical nephrocalcinosis may be missed on US)

Bonec Fractures, bone pain, growth retardation X-ray: dense or lucent metaphyseal bands at the growth cartilage
plate, vertebral condensations, osteopenia, epiphyseal nuclei
(target-like) knee epiphyses

Eyec Disturbed vision, specific brown coloured retinal deposits Fundoscopy
Arteriesd Media calcifications US, CT
Myocardiumd Cardiac failure, arrhythmia, heart block, left ventricular

hypertrophy, systolic and diastolic dysfunction
ECG, echocardiography
CT: calcifications

Thyroidd Hypothyroidism US
Thyroid function tests

Skine (Painful) skin nodules, skin necrosis, gangrene, calciphylaxis-
like skin lesions, pruritus

Skin biopsy

Nervese Ischaemic neuropathy Clinical assessment
Musclee Myopathy by CaOx deposition Biopsy, CT
Bowele Prolonged oxalosis: depositions of CaOx in the intestinal wall CT
Jointse Arthritis (late sign) X-ray, CT

aCT, computed tomography.
bAlways involved.
cFrequently involved.
dOften involved.
eLess often involved.
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PH patients with a GFR <60 mL/min/1.73m2 should
undergo regular measurement of POx and monitoring of
eye involvement by fundoscopy (Table 1). In addition, those
with a GFR <30 mL/min/1.73m2 should undergo assess-
ment of cardiac involvement by ECG—echocardiography,
and bone by X-ray as appropriate.

US and computed tomography scan of heart and visceral
organs can assist in evaluating the level of calcification in
patients with systemic oxalosis.

Biochemical and enzymological assessment

(1) We recommend measuring 24-h urine oxalate, creati-
nine and glycolate in any patient with a possible diag-
nosis of PH1 and preserved renal function as a first-line
evaluation.

(2) We recommend measuring plasma oxalate in CKD
patients.

(3) We recommend measurement of AGT enzyme activity
if genetic testing is inconclusive.

The usual biochemical indicator of PH1 is a persistently
and markedly elevated urine oxalate (UOx) excretion
>0.5 mmol/1.73m2 per day in the absence of secondary
causes of hyperoxaluria. There is no clear cut-off for pri-
mary disease versus secondary hyperoxaluria: an excretion
>0.7 mmol/1.73m2 per day is more likely to have a meta-
bolic cause but some secondary cases due to Crohn’s dis-
ease, other chronic intestinal disease, short bowel syndrome
and pancreatic insufficiency secondary to cystic fibrosis
[19, 20] can have grossly elevated (>1 mmol/1.73m2 per
day) oxalate excretion. Values which fall between 0.5 and
0.7 cannot exclude PH and a strong clinical suspicion e.g.
recurrent stones, young age, heavy crystalluria (>200 cal-
cium oxalate monohydrate crystals/mm3) should lead to
more specific investigations. In children, oxalate to creati-
nine ratio can be determined on random urine specimens,
but ratios fall rapidly in early life and are influenced by
prematurity and nutrition; thus, interpretation requires an
age-related reference range [21, 22]. Molar creatinine ratios
from spot urine may give conflicting results so that con-
firmation of hyperoxaluria from a 24-h urine collection
related to body surface area is recommended at all ages.
A raised urine glycolate excretion is suggestive of PH1 but
has a low diagnostic sensitivity and specificity; indeed, it
is elevated in only two-thirds of patients and can rise as a
result of dietary intake.

POx is unhelpful for diagnosis if renal function is normal.
POx will increase as GFR falls and there is no clear cut-off
to distinguish patients with PH from those with renal failure
from any other cause, although values >100 lmol/L are
more likely to be due to PH. Plasma glycolate may also
be helpful in some patients [23].

The presence of oxalate crystals in a renal biopsy brings
further support for a metabolic disturbance as the under-
lying cause.

The gold standard diagnostic test is the measurement of
AGT catalytic and immunoreactivity in a liver biopsy speci-
men [24], which has a sensitivity >95%; false negatives are
possible, albeit rarely, in patients with the p.Gly170Arg

mutation [25] in which catalytic activity is preserved but
the enzyme is non-functional in vivo due to intracellular
mislocation. The wider availability of genetic testing has
increased use of DNA analysis for diagnosis although there
are still some cases in whom no mutation is found in the
AGXT gene; AGT catalytic activity is therefore needed in
these patients in order to completely exclude PH1. Addi-
tional genetic analysis of the GRHPR and HOGA1 genes
can be performed to confirm/exclude PH2 and PH3, which
may have a similar presentation.

Whenever the causative mutation(s) are known, DNA
analysis is the method of choice for prenatal testing and
diagnosis in other family members.

Genetic tests for mutations in the AGXT gene

(1) We recommend genetic testing in subjects with pheno-
typic characteristics of PH1.

(2) We recommend extending mutation analysis to
siblings and parents.

(3) We recommend offering prenatal diagnosis using
mutation analysis to parents of an affected child.

Over 150 different mutations have been found so far in
the AGXT gene [26]. Although most mutations are
restricted to individual families, some are found at high
frequency e.g. p.Gly170Arg (also known as G170R) found
in ~30% of mutant PH1 alleles. Many PH1 mutations, in-
cluding p.Gly170Arg, segregate and functionally interact
with the common intragenic polymorphism Pro11Leu [27],
which appears to increase their pathogenicity.

Genomic DNA isolated from ethylenediaminetetraacetic
acid blood is the sample of choice. Salivary DNA and
chorionic villus (for prenatal) are also suitable for diagnosis
and carrier testing. All samples should be accompanied by
detailed clinical and laboratory data to support the appro-
priateness of the request as well as documented consent for
the analysis.

Targeted sequence analysis of Exons 1, 4 and 7 of AGXT
has been proposed for first-line testing, with test sensitivity
of 70% for a single mutation in a biopsy-proven population
[28]. However, additional sequence of the entire coding
region and flanking intronic regions will be required in
up to 50% of patients and is strongly recommended. While
it is not advised to include polymorphic variants in reports,
the presence of the p.Pro11Leu (major/minor) variant is
of significance and we recommend that this change is
included in the report. It is recommended to always extend
the analysis to both parents to confirm the segregation
of any identified mutation(s). The results should be re-
ported following recognized guidelines for nomenclature
(www.hgvs.org) and content (www.ssgm.ch). For novel
mutations, the report should include some indication of
the likely pathogenicity.

For affected individuals and families in whom no muta-
tion or only a single disease-causing mutation is identified,
additional analyses may be indicated. Multiplex ligation-
dependent probe amplification analysis can be used to
search for gene deletions or duplications. No recommenda-
tion can yet be given on its performance with AGXT due to
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little experience with the available kit. If no diagnosis is
achieved, testing for PH2 and PH3 should be considered,
even if evidence is limited to few patients studied. In cases
with a strong suspicion but no mutation found in the three
genes, a liver biopsy should be considered.

Linkage analysis with intragenic (e.g. the variable num-
ber tandem repeat in intron 4) and extragenic markers can
be helpful particularly for prenatal diagnosis and family
studies [29–31]. The accuracy can be as high as 99% but
depends on a correct clinical diagnosis of PH1 in the affected
relative(s) and on the informativeness of genetic markers in
the family.

Any report of genetic test should be given to the patients
by a genetic counsellor or specialist/consultant with a good
knowledge of PH. However, prediction on the clinical
course of the disease cannot be made on the basis of the
genetic findings and the clinical follow-up of the index
case, hence, prenatal counselling is extremely difficult.

Conservative treatment

(1) We recommend starting conservative therapy as soon
as a diagnosis of PH1 has been suggested.

a) We recommend a high fluid intake, at least 3 L/m2

per 24 h.

b) We recommend using a nasogastric tube or gastro-
stomy feeding tube to guarantee adequate hydration,
mainly in infants.

c) We recommend administering vitamin B6 (pyridox-
ine) in any patients with proven PH1, starting at a dose
of 5 mg/kg per day and not exceeding 20 mg/kg per day,
aiming to decrease urine oxalate excretion by <30%.

d) We recommend calcium oxalate crystallization inhib-
ition by use of alkalization with oral potassium citrate at
a dose of 0.10–0.15 g/kg body weight per day (0.3–0.5
mmol/kg) as long as GFR is preserved.

(2) We do not recommend special dietary interventions
other than for other concurrent diseases in the absence
of CKD.

Conservative measures should be initiated, as soon as
investigations are completed and while renal function is
maintained. Once ESRD is established, pyridoxine is the
only specific treatment that should be pursued.

The following measures apply to all types of PH with the
exception of pyridoxine, which is specific to PH1.

High fluid intake. High fluid intake in stone formers has
been proven to be effective in epidemiological and pro-
spective intervention studies [32]. In PH, the recommended
fluid intake is >3 L/m2 per day, distributed throughout 24
h. In infants and small children, a feeding or gastrostomy
tube is often required. Special care should be taken in sit-
uations of fluid losses (diarrhoea, vomiting and fever) or
limited oral hydration (surgery) and intravenous (i.v.) fluid
intake instituted if necessary.

Vitamin B6. Pyridoxal phosphate, one of the vitamin B6
vitaminers, is a cofactor for AGT. Administration of pyr-
idoxine hydrochloride has been shown to be associated
with a decrease in UOx in ~30% of patients with PH
[33, 34], but the metabolic basis of pyridoxine responsive-
ness is not clear. All PH1 patients should be tested for
pyridoxine responsiveness, and if responsive, treated until
liver transplantation is performed, even if undergoing
haemodialysis (HD). The recommended starting dose is
5 mg/kg per day, increasing by 5 mg/kg steps to a max-
imum of 20 mg/kg per day [35]. Responsiveness has been
noted at doses inferior to 5 mg/kg per day. Responsive-
ness is currently defined by a >30% decrease in UOx
excretion after a test period of a minimum of 3 months
at maximum dose [36, 37]. Absorption of pyridoxine may
vary between patients and assessing plasma levels may be
useful, although therapeutic levels are not clearly defined.
Side effects are rarely seen and sensory neurotoxicity is
unusual. A subset of patients carrying one or two copies
of p.Gly170Arg or p.Phe152Ile mutation are more likely
to respond to pharmacological doses of pyridoxine, with
other mutations possibly similarly responsive [38, 39].

Alkalization of the urine. Alkalization of the urine with
alkali citrate can reduce urinary CaOx saturation by form-
ing complexes with calcium thus decreasing stone growth
or nephrocalcinosis [40]. Potassium citrate at a dose of
0.10–0.15 g/kg body weight per day (0.3–0.5 mmol/kg)
is recommended. It may be replaced by sodium citrate
appropriate to GFR and plasma potassium.

Other inhibitors of calcium oxalate crystallization. Other
inhibitors of calcium oxalate crystallization such as pyro-
phosphate ions may decrease CaOx crystallization although
orthophosphate has never been evaluated independently
of other treatments [41]. Moderate doses of phosphate
20–30 mg/kg per day may be administered. There is no
evidence that magnesium monotherapy can prevent stone
formation [42, 43]. Despite the ability of Oxalobacter
formigenes to metabolize oxalate, there is as yet no evidence
that probiotics can significantly decrease UOx excretion in
PH patients [44, 45].

Diet. A restriction in oxalate intake is of limited use as
the main source of oxalate is endogenous and intestinal
oxalate absorption is lower in PH patients compared to
normal subjects [46]; however, relying on precautionary
principle, some experts recommend avoiding oxalate-rich
foods in the diet. Calcium intake should remain normal as
oral calcium binds intestinal oxalate and dietary calcium
restriction results in higher oxalate intestinal absorption
[47, 48]. Excessive intake of vitamin C and D is to be
avoided. Careful vitamin D supplementation in children is
recommended. Ascorbic acid i.v. supplementation should
be used with caution in dialysis PH patients [49].

Monitoring. The monitoring of urinary pH, volume and
oxalate excretion may be useful. When advanced CKD has
been reached, oxalosis bone involvement may be responsible
for impaired responsiveness to erythropoiesis-stimulating
agents and to growth hormone treatment [50–52].
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Surgical management of urolithiasis

(1) We do not recommend any kind of surgical interven-
tion in PH1 patients with uncomplicated urinary stone
disease, except when there is obstruction, infection or
multiple urolithiasis.

(2) We recommend endoscopic procedure as preferential
strategy to manage urolithiasis in patients who require
intervention.

The management of intraluminal stones by the urological
surgeon is complicated by the potential of concomitant pres-
ence of nephrocalcinosis. The successful removal of intra-
luminal stones can only be assessed by endoscopy, as even
successfully treated completely stone-free kidneys will re-
veal ‘residual stones’ on imaging when nephrocalcinosis is
present. Non-endoscopic treatment (i.e. lithotripsy) holds the
risk of misinterpretation, which means that shock waves are
applied on nephrocalcinosis spots instead of stones [53].
Different minimally invasive methods like extracorporeal
shock wave lithotripsy (ESWL), semi-rigid ureteroreno-
scopy (URS), flexible ureterorenoscopy (RIRS), percutane-
ous nephrolithotomy (PCNL) and laparoscopic approaches
are currently established for interventional stone treatment.
Open surgery has become exceptional in this field.

ESWL has been successfully applied to most kidney
and ureter stones and has emerged worldwide as a stand-
ard tool [54]. It is the preferred treatment for intrarenal
calculi <20 mm diameter. Success rates after ESWL,
meaning stone-free kidneys, range from 55 to 90%. How-
ever, ESWL means in situ fragmentation of the stone,
leaving the gravel behind for elimination by natural route.
As a consequence, stone clearance of the urinary tract can
be incomplete. Up to 60% of patients with small residual
stone fragments (<3 mm) after ESWL will have increas-
ing accumulation and formation of new stone masses on
these residues [55]. PH1 stone formers experience a high
risk of prompt stone re-growth on such residues because
of ongoing hyperoxaluria.

While guidelines still recommend ESWL [56], in daily
practice, this is completely replaced by endoscopy in PH1
patients when multiple stones are present [57]. URS, RIRS
and PCNL allow fragmentation and achieve removal of
stone material under direct visual control. Stone size and
localization determine whether a retrograde, flexible or per-
cutaneous access is the most appropriate technique. By the
aid of pneumatic, electrohydraulic, ultrasound or holmium
laser probes, stones are crushed into small removable frag-
ments or even dust which can be flushed out. The patient
can expect excellent stone-free rates, reaching 80–100% for
all techniques [URS, RIRS (kidney stones < 20 mm) and
PCNL]. Endoscopy allows a complete clearance of the
urinary tract at the end of the procedure, which is different
from ESWL.

Dialysis procedures

(1) We recommend avoiding any form of dialysis unless
absolutely necessary and to consider pre-emptive trans-
plantation in PH1 patients with progressive CKD.

(2) We recommend using high efficacy dialysis, such as
daily HD, nocturnal dialysis, combination of HD and
peritoneal dialysis (PD), in patients where pre-emptive
transplantation is not an option.

(3) We do not recommend dialysis in the early postoper-
ative transplantation period other than indications
described in the transplant guidelines.

(4) We do recommend haemodialysis/filtration for clear-
ance of oxalate during and after organ transplantation
in patients with systemic involvement and/or insuffi-
cient urine outflow in the early post-transplant period.

Although the molecular mass of oxalic acid is small
(90 Da), conventional dialysis is unable to remove suffi-
cient quantities of oxalate proportionate to the continuous
daily production. Oxalate is generated at a rate of 4–7 mmol/
1.73m2 per day in contrast to removal via conventional
dialysis at a rate of 1–2 mmol/1.73m2 per day in adults
and 3–4 mmol/1.73m2 per day in children, resulting in an
uncontrolled tissue accretion rate [23, 58, 59].

Consequently, conventional dialysis is not considered
ideal for patients with systemic oxalosis who have reached
ESRD [16, 60]. However, long-term dialysis may be
needed while awaiting organ transplantation and achieving
adequate body size. PD and HD have been used either
alone or in combination in order to maximize oxalate re-
moval [59, 61]. The peculiar distribution of oxalate mass in
the body explains the limitations of dialysis treatment even
when optimized. In systemic oxalosis, tissue oxalate is in
equilibrium with oxalate in body fluids. When plasma
CaOx supersaturation (bCaOx) is reached, oxalate precipita-
tion occurs; the threshold of CaOx supersaturation (bCaOx

> 1) ranges between 30 and 45 lmol/L, also depending on
serum calcium concentration [62, 63]. Thus, the goal should
be to lower POx enough with dialysis to keep it below bCaOx

for as long as possible during the interdialytic period.
Oxalate clearance on HD is greater than on PD

(~120 mL/min on HD compared to ~7 mL/min on PD)
[64]. Standard HD programmes will result in a weekly clear-
ance of oxalate of 6–9 mmol/1.73m2 per week equivalent to
2–3 days of endogenous production of oxalate [65]. PD is
insufficient to clear adequate quantities of oxalate but in
some patients, a combination of overnight PD using contin-
uous cycling PD/nocturnal intermittent PD and intermittent
daily HD can enhance the overall clearance of oxalate and
attempt to reduce the rebound which occurs after HD. The
use of combination therapy, high-flux dialysers or long epi-
sodes of haemofiltration has been advocated to improve ox-
alate removal [60, 66].

However, while HD can reduce POx by ~60% following
a dialysis session, this will return to 80% of the pre-dialysis
levels within 24 h as HD removes only a small fraction
of total body oxalate, followed by a rebound from bone
turnover [67].

HD and/or continuous renal replacement therapy may
be required following isolated liver transplantation where
sequential hepatorenal transplantation is being undertaken
or following combined transplantation where there has
been a delay in improvement of renal graft function. In
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these circumstances, the benefit of intra-operative and
post-transplantation dialysis is debated. It can be consid-
ered in patients with significant systemic involvement
where the urine excretion is limited. Dialysis in these
circumstances will produce a rapid fall in POx thus pro-
tecting the transplanted kidney from tubulotoxic effects
and oxalate deposition. In any case, the risk of CaOx
supersaturation should be avoided with accurate fluid
management [60, 68].

Transplantation strategy

(1) We recommend planning pre-emptive organ transplan-
tation at CKD Stage 3b to avoid the complications of
systemic oxalosis.

(2) We do not recommend isolated kidney transplantation,
unless there is no other option.

(3) We recommend combined liver–kidney transplantation
in most patients, either simultaneously or sequentially
according to patient’s condition and to local facilities.

(4) We do not recommend pre-emptive isolated liver trans-
plantation unless in very well-defined and selected
patients.

Organ transplantation should be planned prior to
systemic oxalosis, i.e. before CKD Stage 4.

Kidney transplantation. There is no scientific rationale
for isolated kidney transplantation, and it should be con-
sidered only for selected adult patients with confirmed
evidence of B6 responsiveness [38].

Liver transplantation. As the liver is the only organ
responsible for glyoxylate detoxification by AGT, the ex-
cessive production of oxalate will continue as long as the
native liver is left in place.

The strategy of liver–kidney transplantation is influenced
by the stage of the disease (Table 2) [69]. Simultaneous
liver–kidney transplantation is logical in patients with
CKD Stage 4 because, at this level, oxalate retention in-
creases rapidly. It has been used successfully with excellent
outcome even in small infants [70, 71]. A sequential

procedure (first liver transplantation, followed by dialysis
attempting to reduce oxalate load from the body, with
subsequent kidney transplantation) may be proposed in
individual ESRD patients. Pre-emptive isolated liver trans-
plantation may be an option in selected patients supervised
by a PH specialist [72–74]. Such a strategy has a strong
rationale but raises ethical controversies since the transplant
procedure of choice needs to be individualized as conserva-
tive management has improved long-term outcome in many
patients with PH1.

Most publications currently report on the use of deceased
donors but a living related donor for split liver or renal
donation may be considered under appropriate conditions.

Post-transplantation reversal of renal and extrarenal
involvement. After combined liver–kidney transplanta-
tion, UOx can remain elevated for many years due to slow
resolubilization of systemic CaOx. Therefore, recurrent
nephrocalcinosis or renal calculi is still a risk and may
jeopardize kidney graft function. The kidney must there-
fore be protected by forced fluid intake supported by the
use of crystallization inhibitors, and calcineurin inhibitors
should be used with caution in order to minimize additional
nephrotoxicity. The benefit of post-transplantation HD is
still debated and should be limited to patients with signifi-
cant systemic involvement and those with acute tubular
necrosis or delayed graft function.

Conclusions

Hyperoxaluria should be considered in any patient with a
history of urolithiasis and/or nephrocalcinosis. Such pa-
tients should be referred to reference centres with access
to appropriate biochemical and genotyping facilities. An
early and accurate diagnosis leading to aggressive suppor-
tive treatment is a major factor in short- and long-term
outcomes. No method of dialysis is ideal; however, inten-
sive extended daily dialysis should be recommended. Early
pre-emptive transplantation should be considered in those
with impaired renal function at an early stage (CKD Stage
3b); most experience in PH1 is available with combined
liver–kidney transplantation.

Table 2. Suggested transplantation options in pyridoxine-resistant PH1 patients according to residual GFR, systemic involvement and local facilitiesa

Tx options
Simultaneous liver 1
kidney Sequential liver–kidney Isolated kidney Isolated liver

HD strategy Peroperative 6
postoperative according to
POx and GFR

Standard HD following
liver Tx aiming at
POx < 20 lmol/L

Preoperative and
peroperative

Sometimes peroperative

CKD Stage 3 (30 < GFR
< 59)

No No No Option in carefully
selected patients

CKD Stage 4 (15 < GFR
< 29)

Yes Option Option if B6 response but
no evidence

No

CKD Stage 5 (GFR < 15) Yes Yes Option if B6 response but
no evidence

No

Infantile form (ESRD < 2
years)

Yes Yes No No

aPOx, plasma oxalate; Tx, transplantation.
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New insights into potential therapies, including restora-
tion of defective enzyme activity through chemical chap-
erones, hepatocyte cell transplantation or recombinant gene
therapy for enzyme replacement, provide some hope for a
curative approach of PH1 in the future.

Access to information

Several national and international societies provide informa-
tion on the PHs. The Oxalosis and Hyperoxaluria Founda-
tion (www.ohf.org) has an extended website with open
access and provides regular updates for physicians, patients
and scientists. It offers an overview of presentation, diagno-
sis and treatment of the disease. The European Hyperoxalu-
ria Consortium OxalEurope (www.oxaleurope.org) brings
together clinicians and scientists throughout Europe; it hosts
a website that directs visitors to country and language-
specific websites. UpToDate, Inc. (www.uptodate.com)
and Medscape (www.medscape.com) provide useful infor-
mation. Genetic information can be obtained on www.
orpha.net and www.genereviews.org.

Conflict of interest statement. None declared.
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